第三章 BEM 仿真分析实例

内容提要:

1、矩形波导天线。

2、正对单反射抛物面天线。

3、偏置单反射抛物面天线。

4、正对双反射抛物面天线。

5、NASA Almond 仿真实例。

6、带馈源的单反射天线。

目标:熟悉 Rainbow Studio 软件 BEM3D 模块的建模环境,掌握 BEM3D 模块的建模步骤,熟练设置各种端口、参数,会分析几何模型的近场分布、远场图表。

第三章主要讲述了 BEM3D 模块的应用。

Rainbow-BEM3D 是针对系统的电磁兼容性能、天线设计、载体多天线布 局、以及雷达 RCS 等高频电磁辐射、散射问题开发的专业电/磁场分析软件模 块。从严格的电磁场积分方程出发,以高阶矩量法结合并行技术为基础,在保 持精度的前提下大大提高了计算规模及计算效率,从而非常适合于天线设计、 载体上天线布局分析、分析雷达散射截面、电磁兼容等开域的辐射应用领域的 各类电磁场问题。Rainbow-BEM3D 采用高阶矩量法(MoM)结合快速多极子 (FMM)、自适应交叉(ACA)等世界一流的加速算法技术,可以用来分析电大尺 寸目标的电磁散射。本软件模块包含的雷达截面散射(RCS)的快速算法 (FastMonoRCS)是目前国际上同类型电磁仿真软件中计算速度最快的技术。同 时是目前市场上唯一能够支持金属和介质的混合仿真,并且考虑了仿真对象所 处的复杂环境,比如海平面、复杂地形以及飞行器的多层隐身材料等。 Rainbow-BEM3D 仿真流程图如图 3-1 所示。

图 3-1 BEM3D 设计流程图

3.1 矩形波导天线

3.1.1 问题描述

波导是微波传输领域最重要的传输媒介之一,开口的波导可以被称为波导 天线。最常见的波导天线是矩形喇叭或者圆形喇叭等,广泛用作馈源及标准测 试天线。这个例子是用来展示如何用 BEM3D 模块对如图 3-2 所示的矩形波导 天线进行建模和仿真的过程。

图 3-2 矩形波导天线示意图

3.1.2 系统启动

3.1.2.1 从开始菜单启动

点击操作系统菜单 Start→Rainbow Simulation Technologes→Rainbow Studio,在弹出的产品选择对话框中选择产品模块,如图 3-3 所示,启动 Rainbow-BEM3D 模块。

图 3-3 启动 Rainbow Studio 系统 BEM 模块

3.1.3 创建文档与设计

如图 3-4 所示选择菜单文件→新建工程→Studio 工程与 BEM 模型来创建 新的文档,其包含一个缺省的 BEM 设计。

图 3-4 创建 BEM 文档与设计

如图 3-5 所示在左边工程树中选择 BEM 设计树节点,选择右击菜单模型 改名把设计的名称修改为 Square_waveguide,也可以在新建模型的时候直接为 设计修改名称。

图 3-5 修改设计名称

点击菜单文件→保存或者 Ctrl+S 来保存文档,将文档保存为

BEMSquare_waveguide.rbs 文件。保存后的 BEMSquare_waveguide 工程树如

图 3-6 所示。

3.1.4 创建几何模型

用户可以通过**几何**菜单下的各个菜单项来从零开始创建各种三维几何模型,包括坐标系、创建点、各种线、面和体结构。

3.1.4.1 设置模型视图

如图3-7所示点击菜单设计→长度单位修改设计的长度单位为毫米(mm)。 如图3-8所示进行设置,点击确认关闭窗口并继续,物理单位默认为GHz。

图3-7 设置长度单位

Ⅰ 模型长度单位 - RainbowStudio 9.0	?	×
单位: mm 王	精度:	7 🛟
取消		确认

图 3-8 设置模型单位

3.1.4.2 设置变量

点击**工程→管理变量**,打开 Square_waveguide 设计的变量设置对话框,如 图 3-9 所示。也可以选中**变量库**,在其右键菜单中点击添加变量进行变量的添 加操作。

🎦 工程变量库 -	R	ainbowStudio 9.0										?	×		
定制 内置		常量				📙 变量属	뱀 -	Rainbo	wStuc	dio 9.	0		?		×
		名称	表达式	值											
	1	freq	2.8	2.8		名称:	V6								-
	2	sf	0.001	0.001		表达式:									
	3	1am	c0/fr	10706…											
	4	wg_a	70	70											
	5	wg_h	100	100		描述:									
增加															
删除											取消	肖) T	畒	
编辑					-										
								应用		取消			确认		

图 3-9 设置模型变量

按照表 3-1 所示添加如下的变量到变量库中。

变量名	表达式
freq	2.8
sf	0.001
lam	c0/freq/sf
wg_a	70
wg_h	100

表 3-1 添加变量

3.1.4.3 创建几何对象

(1) 创建长方体

点击菜单**几何→长方体**创建抛物面如图 3-10 所示,在模型视图窗口中进行 如图 3-11 和 3-12 所示操作,用鼠标操作创建长方体。

文件	主页	工程 讨	设计	几何	物理	分析	f 结	課显示	视图	國國	il i	帮助			
जि र वि	5>	划 相对常规	Я		+		Щ.	f(x) †		\diamond	f[xy]		•		
	Σı,	🖞 相对平利	多	لا	Z	\sim	6		0	\bigcirc	-191	1	6	•	
导入 导 ▼	¥出 ▼	21 相对旋转	麦 相	(IU)t灰目 、	\cap	n	6	解析 ▼	0	Ø	解析		• @		椭球体

图 3-10 创建长方体

图 3-11 用鼠标拉出长方体底面

图 3-12 用鼠标拉出长

方体高度

在创建新的模型时,可以在任意位置创建,之后再对其参数进行修改。创 建新模型后一般会出现一个对象命令(如: Box1),在其下拉菜单中还有一个对 象创建命令(如: CreateBox),双击对象命令可以修改几何体的名称、材料、坐 标系等参数,双击创建命令则可以修改几何模型的具体位置以及模型的长宽高 等具体参数。

双击创建好的长方体对象 Box1, 在如图 3-13 所示的属性窗口中输入新名称 square_wg。

₽- 68 坐标系	
□- ⑦ 实体 □- ❸ yacum	😤 几何 - RainbowStudi ? 🛛 🗙
E Box1	「几何
— 🗍 CreateBox	名称: square_wg 颜色: [91, 170, 237] 求解内部: ▼ 模式几何: ▼
	材料: vacuum ▼ 模块: デ ▼ 方向: G1nba1 ▼ 透明度: 0.00 ↓
	显示模式: Inherit. Inher

图 3-13 修改抛物面对象名称

双击对象的创建命令 **CreateBox**,在如图 3-14 所示的属性窗口中输入位置、长度、宽度以及高度。

🐻 属性 -	R ? ×
命令	CreateBox
坐标系	Global 💌
└位置─	
X -wg	;_a/2
Y -wg	;_a/2
Ζ 0	
长度	wg_a
宽度	wg_a
高度	wg_h
命令	
取消	确认

图 3-14 修改长方体的尺寸

位置

X:	-wg_a/2	长度:	wg_a	
Y:	-wg_a/2	宽度:	wg_a	
Z:	0		高度 :	wg_h

创建好的长方体如图 3-15 所示。

图 3-15 创建好的长方体

(2) 修改长方体

选择模式可以分为对象(Object)、面(Face)、边(Edge)、点(Vertex)等,当修 改选择模式后,再选择几何模型时就会选择对应的几何,如果是面选模式就会 选择到面,边选模式就会选择几何的边。当需要对特定的几何部分进行设置 时,即可修改选择模式来进行相关设置。

在几何视图界面的下方的选择模式窗口选择面(Face)模式,如图 3-16 所

图 3-16 将选择模式修改为面选模式

修改为面选择模式之后,此时可以选择几何体的面,选择创建好的长方体 的顶面,然后在右键菜单中进行几何→修补→移除面操作,如图 3-17 所示。

图 3-17 移除顶面

3.1.5 仿真模型设置

接下来需要对几何模型设置各种相关的物理特性,包括模型的边界条件、 激励、网格控制参数等。

3.1.5.1 设置边界条件

选择修改完的 Square_wg 几何模型,在其右键菜单中选择添加边界条件→ 理想电导体,如图 3-18 所示。

图 3-18 添加理想电导体边界

3.1.5.2 设置长方体底面网格控制参数

选择长方体的底面,为其修改底面网格尺寸,可以在**视图**中将选择模式修改为旋转模式,或者使用 Alt+鼠标左键的方式旋转几何体,如图 3-18 所示。

图 3-18 修改为旋转模式

将视图旋转到几何体的底部,选中长方体的底面,进行**添加网格控制→面** 操作,如图 3-19 所示,为底面设置网格尺寸。

图 3-19 为底面设置网格大小

在弹出的修改几何面网格长度控制对话框中对网格进行如图 3-20 所示的设

置。

🎦 几何面网格长度控制	?	×
名称: LengthOnFace1		
1275		mm
缺省 取消	Į.	角认

图 3-20 修改几何面网格长度

3.1.5.3 添加端口激励

创建几何模型后,用户可以为几何模型设置各种端口激励方式和参数。在 工程管理树中,Rainbow系列软件把这些新增的端口激励添加到工程树的激励 端口目录下。

选择长方体的底面,在其右键菜单中选择**添加端口激励→矩形波端口**操 作,如图 3-21 所示。

图 3-21 为长方体底面添加矩形波端口

在激励端口目录下可以找到刚创建的矩形波端口 P1,双击 P1 可以对 P1 的参数进行修改,如图 3-22 所示。 在矩形波端口设置对话框中,双击 m、n 可以修改 m 和 n 的值,并按照图 3-22 所示,将 m 修改为 0, n 修改为 1。

🎦 矩形波端口流	敦励	- Ra	ainb	?	\times
名称: P1					
┌ 激励模: ───					
极化	m	n		阻抗	
1 TE			50		
				•	
创建		删修	余	清除	
┌ 积分线: ────					
起点: -35,0,0					mm
终点: 35,0,0					mm
编辑				交换	
缺省		聑	以消	确认	

图 3-22 修改矩形波端口参数

修改完成后点击确认按钮确认操作。

在工程树中选择端口激励,在其右键菜单中选择**场域强度**,如图 3-23 所示。

工程 🔮	× • 🛞 坐标到
	▲ ● 33 至秋秋 ● 几何 ● □ [● □ [
 ○ ○	 波 强度 激励源显示 [

图 3-23 打开场域强度对话框

在修改场域强度对话框中可以修改添加的端口激励的幅度和相位,将端口激励的相位修改为90,如图 3-24 所示。

图 3-24 修改激励源相位

修改完成后点击确认按钮。

3.1.5.4 设置网格参数

几何模型创建好后,用户需要为几何模型和模型中的某些关键结构设置各种全局和局部网格剖分控制参数。在工程管理树中,Rainbow系列软件把这些新增的结果显示添加到设计的**网格部分**目录下。选择菜单**网格部分→初始网格**设置如图 3-25 所示的初始网格控制参数。

🎦 初始网格设置 - RainbowS ? 🛛 🗙								
┌ 边长控制: ───								
网格大小模式:	Custom		•					
平均:	1am/15		mm					
最小:	0		mm					
最大:	0		nm					
增长率	1.5							
── 精确投影控制								
网格剖分方法:								
类型: Hse Triangular Element.								
阶数: Linear								
高级选项:								
几何边网格加密:	0.00		÷					
📃 相邻边网格加	密							
📃 合并精度范围	内的网格节点和边							
■ 図 面网格剖分优	3/K							
缺省	取消	矿	畒					

图 3-25 修改初始网格参数

网格大小模式: Custom

平均: lam/15

其余保持默认设置,完成设置后点击确认完成设置。

3.1.6 仿真求解

3.1.6.1 设置求解方案

下一步,用户需要设置为模型分析设置求解器所需要的仿真频率及其选项,以及可能的频率扫描范围。选择菜单**分析→添加求解方案**,如图 3-26 所示。

图 3-26 添加求解方案操作

求解器的设置中如图 3-27 和图 3-28 设置。

 常規 选项 求解器 仿真名称: BEM1 				
- 求解器 仿真名称: BEM1				
仿真名称: BEM1				
			☑ 启用	4
仿真频率: freq			Hz	
数据精度: Single Precision	n			Ŧ
基函数阶数: 1				÷.
📃 支持网元基函数自动降阶				
▶	4 (CFIE)			
缺省		取消	确认	

图 3-27 设置求解器 1

仿真频率: freq

数据精度: Single Precision

基函数阶数:1

图 3-28 设置求解器 2

求解方法: Use direct LU decomposition

在工程树的**求解方案**中选择新加的**求解方案 1**,单击右击菜单**扫频方案→** 添加扫频方案如图 3-29 所示,并按照图 3-30 所示设置仿真求解扫频方案。

□		- · ·	è 🛄 端口(点。 數励知	em 👌	Ż.
 □ 12 (10) □ 12 (1	 Image: S Image: S	删除 属性 标签 启用/禁用 剖分网格 求解 清除数据 Solution Data 仿真日志	Del Shift+P Shift+T			
方案	_	扫频万案		(T)	添加扫频方案	-

图 3-29 添加仿真求解扫频方案

🎦 仿真扫描	顷率方案 - Rainbo	? ×					
常规 名称: FreqSweep1							
- 扫描	Interpolating 💽	选项					
─ 频率: ──────────────────────────────────	Linear by number 💌	列举					
起始: 终止:	2. 8	GHz					
☆亚: 数目:	401						
缺省 取消 确认							

图 3-30 设置扫频方案

扫描类型: Interpolating

起始: 2.8

终止: 8.4

- 数目: 401
- 3.1.6.2 求解

完成上述任务后,用户可以选择菜单**分析→验证设计**,如图 3-31 所示验证 模型设置是否完整。

🎦 验证模型 - R ? 🛛 🗙
 Geometry Material Boundary and Excitation Solution Pattern Mesh Terminal
关闭

图 3-31 验证仿真模型有效性

下一步,选择菜单**分析→求解设计**启动仿真求解器分析模型。用户可以利用任务显示面板来查看求解过程,包括进度和其它日志信息,如图 3-32 所示。

1	× >	求释	
	۴	32%	Cance1
	3	求解	
		load metrial >Pesi memory usage and available memory 56 / 3832 MB load metr	^
		>mesh type: triangular mesh (LINEAR)	
	NP .		*
j	ŧ	BENGquare_waveguide-Square_waveguide 🚨	

图 3-32 任务求解进度

3.1.7 结果显示

3.1.7.1 添加球场

选择工程管理树的**散射远场**节点,选择右击菜单中的**球面**,如图 3-33 所示,并在如图 3-34 所示的对话框中输入如下控制参数来添加模型的远场观察球。

🔒 远场散射球面设置 - RainbowStudio 9.0 ? X										
- 散射远场:										
名称: FarSphereField1										
位置:										
坐标系: G1nba1										
- Phi										
取样方法:	Sample by Step 💌		取样方法:	Sample by Step	•					
起点:	-90	deg	起点:	-180		deg				
终点:	90	deg	终点:	180		deg				
步幅:	1	deg	步幅:	2		deg				
3维图形示意:										
长度: 1000 mm										
	_									
缺省 取消 确认										

图 3-34 打开球面设置

Phi		Theta
起点:	-90 deg	起点: -180 deg
终点:	90 deg	终点: 180 deg
步幅:	1	步幅:2

设置完远场观察球后,可以如图 3-35 所示选择新增远场观察球的右击菜单 计算来启动求解器后场计算。

图 3-35 计算球场

3.1.7.2 二维矩阵线图

求解结束后,在工程树中选择结果显示,在其右键菜单中选择远场图表→2 **维矩阵线图**,打开远场图表,如图 3-36 所示。

Theta

图 3-36 打开二维矩阵线图

按照图 3-37 所示设置图表的参数。

Rainbow图表生成器 - 1D Rect Chart - RainbowStudio 9.0 ?						\times		
 一数据源: 一 参数扫描: 方案: 激励: 传感源: 	Nu11 A11 A11 A11	「结: 类」 B- Po Re	果: 別: Field Jarization Ratio Jarization Ratio Janalized Gain	项: Gai Gai Gai Gai Gai	n Total n Phi n Theta n X n Y		函数: PhaseRad PhaseRadCont Rea1 dB10 dB10Normalize	-
[8] BEM1:	FinalPass:P1:FarSphereField1	Ar 一数 X:	Antenna Parameters 数据过滤: X: RadiationTt I A11		Gain Z Gain LHCP		 dB20Normalize Value 	
		1	RadiationPhi	0				
		2	Frequency	A11				
		3	PortModel	A11				
■ 求和数排	居源中的数据							

图 3-37 设置图表参数

类别: Gain

项: Gain Total

函数: dB20

RadiationPhi:

0

点击**新增图表**可以查看设置结果,如图 3-38 所示。

图 3-38 2 维矩阵线图结果(Phi=0)